Last updated: 2022-02-05

Checks: 7 0

Knit directory: hesc-epigenomics/

This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.


Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.

Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.

The command set.seed(20210202) was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.

Great job! Recording the operating system, R version, and package versions is critical for reproducibility.

Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.

Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.

Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.

The results in this page were generated with repository version 0b97db7. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.

Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish or wflow_git_commit). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:


Ignored files:
    Ignored:    .Rhistory
    Ignored:    .Rproj.user/
    Ignored:    output/

Untracked files:
    Untracked:  data
    Untracked:  data_old/
    Untracked:  figures_data/

Unstaged changes:
    Deleted:    data/meta/Kumar_2020_scaling_groups.csv
    Deleted:    data/meta/Kumar_2020_scalinginfo.csv
    Deleted:    data/meta/Kumar_2020_stats_summary.csv

Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.


These are the previous versions of the repository in which changes were made to the R Markdown (analysis/master_gene_table.Rmd) and HTML (docs/master_gene_table.html) files. If you’ve configured a remote Git repository (see ?wflow_git_remote), click on the hyperlinks in the table below to view the files as they were in that past version.

File Version Author Date Message
Rmd 0b97db7 C. Navarro 2022-02-05 wflow_publish(“./analysis/master_gene_table.Rmd”, verbose = T)
html c1fb0ef C. Navarro 2022-02-05 Build site.
Rmd 29a9327 C. Navarro 2022-02-04 wflow_publish(“./analysis/master_gene_table.Rmd”, verbose = T)
html 2789032 C. Navarro 2021-09-10 Build site.
Rmd b5cddd9 C. Navarro 2021-09-10 wflow_publish(“./analysis/master_gene_table.Rmd”, verbose = T)
html 3401e70 C. Navarro 2021-09-06 Build site.
Rmd 05ea085 C. Navarro 2021-09-06 Group annotations in the master table notebook
html ba77468 C. Navarro 2021-07-02 Build site.
Rmd b7be1cb C. Navarro 2021-07-02 wflow_publish(“./analysis/master_gene_table.Rmd”, verbose = T)
html 25d731d cnluzon 2021-05-27 Build site.
Rmd 3c72dd4 cnluzon 2021-05-27 wflow_publish(“./analysis/master_gene_table.Rmd”)
html 847f990 cnluzon 2021-05-26 Build site.
Rmd dc04f09 cnluzon 2021-05-26 wflow_publish(“./analysis/master_gene_table.Rmd”, verbose = T)
html 58564ac cnluzon 2021-05-26 Build site.
Rmd e6efbe9 cnluzon 2021-05-26 wflow_publish(“./analysis/master_gene_table.Rmd”, verbose = T)

Summary

This notebook shows how the master gene table is generated. Essentially, genes from hg38 human genome annotation are retrieved and the region around their TSS is scored for H3K4m3, H3K27m3 and H2AUb. DeSeq2 is applied in a Minute-ChIP specific manner and genes are annotated as differential across conditions: Primed vs Naïve, EZH2i treated Naïve vs Naïve and EZH2i treated Primed vs Primed. Final table includes these values, fold change differences and statistical significance scores for all genes.

Additionally, expression values are also used to do a DeSeq2 analysis and such scores are incorporated to the table.

The annotation file used is the one coming from Annotations/Genes/refFlat.txt.

Additionally, since all isoforms available are annotated, one is selected per gene to do the TSS analysis. If corresponding identifier in knownCanonical from UCSC data tables exists, then corresponding isoform is used. If more than one identifier corresponds, the longest annotation is selected. For the rest, longest annotation is selected.

Bivalent genes are further annotated by H3K27m3 status, bivalency status and germlayer.

Helper functions

ni_pr_expression_analysis <- function(datadir, alpha = 0.05, shrink = TRUE) {
  counts_file <- file.path(datadir, "rnaseq/Kumar_2020/rsem.merged.gene_counts.tsv")
  c1_columns <- paste("Kumar_2020_Naive", c("R1", "R2", "R3"), sep = "_")
  c2_columns <- paste("Kumar_2020_Primed", c("R1", "R2", "R3"), sep = "_")
  rsem_deseq_analysis(counts_file, c1_columns, c2_columns, "Naive", "Primed", "Naive", alpha, shrink = shrink)
}

ni_ezh2i_expression_analysis <- function(datadir, alpha = 0.05, shrink = TRUE) {
  counts_file <- file.path(datadir, "rnaseq/Kumar_2020/rsem.merged.gene_counts.tsv")
  c1_columns <- paste("Kumar_2020_Naive", c("R1", "R2", "R3"), sep = "_")
  c2_columns <- paste("Kumar_2020_Naive_EZH2i", c("R1", "R2", "R3"), sep = "_")
  rsem_deseq_analysis(counts_file, c1_columns, c2_columns, "Naive", "EZH2i", "Naive", alpha, shrink = shrink)
}

pr_ezh2i_expression_analysis <- function(datadir, alpha = 0.05, shrink = TRUE) {
  counts_file <- file.path(datadir, "rnaseq/Kumar_2020/rsem.merged.gene_counts.tsv")
  c1_columns <- paste("Kumar_2020_Primed", c("R1", "R2", "R3"), sep = "_")
  c2_columns <- paste("Kumar_2020_Primed_EZH2i", c("R1", "R2", "R3"), sep = "_")
  rsem_deseq_analysis(counts_file, c1_columns, c2_columns, "Primed", "EZH2i", "Primed", alpha, shrink = shrink)
}

make_df <- function(diffres, name_suffix) {
  df <- data.frame(diffres)
  colnames(df) <- paste(colnames(df), name_suffix, sep = "_")
  df$gene <- rownames(df)
  df
}

make_label <- function(fnames) {
  labs <- gsub("_pooled.hg38.*scaled.bw", "", basename(fnames))
  # Remove the uncomfortable . in EZH2i elements
  labs <- gsub("-", "_", labs)
  labs <- gsub("H9_", "", labs)
  paste(labs, "mean_cov", sep = "_")
}

merge_by_name <- function(lociset) {
  mcols_df <- function(gr) { data.frame(mcols(gr)) }
  
  dfs <- lapply(lociset, mcols_df)
  dfs %>% reduce(full_join, by = "name")
}

make_diff_df <- function(diff_lfc, prefix) {
  df_diff <- data.frame(diff_lfc)
  # DS stands for DeSeq
  colnames(df_diff) <- paste(prefix, colnames(df_diff), sep = "_")
  df_diff$name <- rownames(df_diff)
  df_diff
}

Config analysis

genes <- rtracklayer::import( "./data/bed/Kumar_2020/Kumar_2020_genes_hg38_UCSC_frozen.bed")

genes_tss_broad <- promoters(genes, upstream = params$tss_wide, downstream = params$tss_wide)
genes_tss_narrow <- promoters(genes, upstream = params$tss_narrow, downstream = params$tss_narrow)

# bwfiles per histone mark
bwdir <- file.path(params$datadir, "bw/Kumar_2020")
bwfiles <-
  list(
    k4_naive = list.files(bwdir, pattern = "H3K4m3_H9_Ni_rep[1-3].hg38.scaled.bw", full.names = T),
    k4_naive_ezh2i = list.files(bwdir, pattern = "H3K4m3_H9_Ni-EZH2i_rep[1-3].hg38.scaled.bw", full.names = T),
    k4_primed = list.files(bwdir, pattern = "H3K4m3_H9_Pr_rep[1-3].hg38.scaled.bw", full.names = T),
    k4_primed_ezh2i = list.files(bwdir, pattern = "H3K4m3_H9_Pr-EZH2i_rep[1-3].hg38.scaled.bw", full.names = T),
    k27_naive = list.files(bwdir, pattern = "H3K27m3_H9_Ni_rep[1-3].hg38.scaled.bw", full.names = T),
    k27_primed = list.files(bwdir, pattern = "H3K27m3_H9_Pr_rep[1-3].hg38.scaled.bw", full.names = T),
    ub_naive = list.files(bwdir, pattern = "H2Aub_H9_Ni_rep[1-3].hg38.scaled.bw", full.names = T),
    ub_naive_ezh2i = list.files(bwdir, pattern = "H2Aub_H9_Ni-EZH2i_rep[1-3].hg38.scaled.bw", full.names = T),
    ub_primed = list.files(bwdir, pattern = "H2Aub_H9_Pr_rep[1-3].hg38.scaled.bw", full.names = T),
    ub_primed_ezh2i = list.files(bwdir, pattern = "H2Aub_H9_Pr-EZH2i_rep[1-3].hg38.scaled.bw", full.names = T),
    in_naive = list.files(bwdir, pattern = "IN_H9_Ni.*rep[1-3].hg38.*.bw", full.names = T),
    in_naive_ezh2i = list.files(bwdir, pattern = "IN_H9_Ni-EZH2i.*rep[1-3].hg38.*.bw", full.names = T),
    in_primed = list.files(bwdir, pattern = "IN_H9_Pr_rep[1-3].hg38.*.bw", full.names = T),
    in_primed_ezh2i = list.files(bwdir, pattern = "IN_H9_Pr-EZH2i.*rep[1-3].hg38.*.bw", full.names = T)
  )

bwfiles_pooled <-
  list(
    k4 = list.files(bwdir, pattern = "H3K4m3.*pooled.hg38.scaled.*", full.names = T),
    k27 = list.files(bwdir, pattern = "H3K27m3.*pooled.hg38.scaled.*", full.names = T),
    ub = list.files(bwdir, pattern = "H2Aub.*pooled.hg38.scaled.*", full.names = T),
    input = list.files(bwdir, pattern = "IN.*pooled.hg38.*", full.names = T)
  )

sorted_colors <- unname(c(gl_condition_colors["Naive_Untreated"],
                        gl_condition_colors["Naive_EZH2i"],
                        gl_condition_colors["Primed_Untreated"],
                        gl_condition_colors["Primed_EZH2i"]))

grey_colors <- c("#cccccc", "#aaaaaa", "#888888", "#555555")

Raw pooled values at TSS per gene

At this point kept area around TSS the same size even though K4 is narrower, so it’s fairer to put them all in the same table.

pooled_k4 <- bw_loci(bwfiles_pooled$k4, genes_tss_broad, labels = make_label(bwfiles_pooled$k4))
pooled_k27 <- bw_loci(bwfiles_pooled$k27, genes_tss_broad, labels = make_label(bwfiles_pooled$k27))
pooled_h2aub <- bw_loci(bwfiles_pooled$ub, genes_tss_broad, labels = make_label(bwfiles_pooled$ub))
pooled_inp <- bw_loci(bwfiles_pooled$input, genes_tss_broad, labels = make_label(bwfiles_pooled$input))

pooled_df <- merge_by_name(list(pooled_k4, pooled_k27, pooled_h2aub, pooled_inp))
master_df <- pooled_df

K27m3 diff analysis

Primed vs Naive

c1 <- bw_loci(bwfiles$k27_naive, genes_tss_broad)
c2 <- bw_loci(bwfiles$k27_primed, genes_tss_broad)

diff <- bw_granges_diff_analysis(c1, c2, "Naive", "Primed", estimate_size_factors = FALSE)

if (params$shrink_histones == TRUE) {
  diff_lfc <- lfcShrink(diff, coef="condition_Primed_vs_Naive", type="apeglm")
  diff <- diff_lfc
} else {
  diff <- results(diff, alpha = params$pval_cutoff)
}

plotMA(diff)

Version Author Date
c1fb0ef C. Navarro 2022-02-05
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26
df_diff <- make_diff_df(diff, "H3K27m3_DS_Pr_vs_Ni")
master_df <- left_join(master_df, df_diff, by = "name")

H3K4m3 diff analysis

Primed vs Naive

c1 <- bw_loci(bwfiles$k4_naive, genes_tss_narrow)
c2 <- bw_loci(bwfiles$k4_primed, genes_tss_narrow)

diff <- bw_granges_diff_analysis(c1, c2, "Naive", "Primed", estimate_size_factors = FALSE)

if (params$shrink_histones == TRUE) {
  diff_lfc <- lfcShrink(diff, coef="condition_Primed_vs_Naive", type="apeglm")
  diff <- diff_lfc
} else {
  diff <- results(diff, alpha = params$pval_cutoff)
}

plotMA(diff)

Version Author Date
c1fb0ef C. Navarro 2022-02-05
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26
df_diff <- make_diff_df(diff, "H3K4m3_DS_Pr_vs_Ni")
master_df <- left_join(master_df, df_diff, by = "name")

EZH2i vs Naive

c1 <- bw_loci(bwfiles$k4_naive, genes_tss_narrow)
c2 <- bw_loci(bwfiles$k4_naive_ezh2i, genes_tss_narrow)

diff <- bw_granges_diff_analysis(c1, c2, "Naive", "EZH2i", estimate_size_factors = FALSE)

if (params$shrink_histones == TRUE) {
  diff_lfc <- lfcShrink(diff, coef="condition_EZH2i_vs_Naive", type="apeglm")
  diff <- diff_lfc
} else {
  diff <- results(diff, alpha = params$pval_cutoff)
}

plotMA(diff)

Version Author Date
c1fb0ef C. Navarro 2022-02-05
3401e70 C. Navarro 2021-09-06
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26
# 
df_diff <- make_diff_df(diff, "H3K4m3_DS_EZH2i_vs_Ni")
master_df <- left_join(master_df, df_diff, by = "name")

EZH2i vs Primed

c1 <- bw_loci(bwfiles$k4_primed, genes_tss_narrow)
c2 <- bw_loci(bwfiles$k4_primed_ezh2i, genes_tss_narrow)

diff <- bw_granges_diff_analysis(c1, c2, "Primed", "EZH2i", estimate_size_factors = FALSE)
if (params$shrink_histones == TRUE) {
  diff_lfc <- lfcShrink(diff, coef="condition_EZH2i_vs_Primed", type="apeglm")
  diff <- diff_lfc
} else {
  diff <- results(diff, alpha = params$pval_cutoff)
}

plotMA(diff)

Version Author Date
c1fb0ef C. Navarro 2022-02-05
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26
# 
df_diff <- make_diff_df(diff, "H3K4m3_DS_EZH2i_vs_Pr")
master_df <- left_join(master_df, df_diff, by = "name")

H2AUb diff analysis

Primed vs Naive

c1 <- bw_loci(bwfiles$ub_naive, genes_tss_broad)
c2 <- bw_loci(bwfiles$ub_primed, genes_tss_broad)

diff <- bw_granges_diff_analysis(c1, c2, "Naive", "Primed", estimate_size_factors = FALSE)

if (params$shrink_histones == TRUE) {
  diff_lfc <- lfcShrink(diff, coef="condition_Primed_vs_Naive", type="apeglm")
  diff <- diff_lfc
} else {
  diff <- results(diff, alpha = params$pval_cutoff)
}

plotMA(diff)

Version Author Date
c1fb0ef C. Navarro 2022-02-05
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26
df_diff <- make_diff_df(diff, "H2Aub_DS_Pr_vs_Ni")
master_df <- left_join(master_df, df_diff, by = "name")

EZH2i vs Naive

c1 <- bw_loci(bwfiles$ub_naive, genes_tss_broad)
c2 <- bw_loci(bwfiles$ub_naive_ezh2i, genes_tss_broad)

diff <- bw_granges_diff_analysis(c1, c2, "Naive", "EZH2i", estimate_size_factors = FALSE)
if (params$shrink_histones == TRUE) {
  diff_lfc <- lfcShrink(diff, coef="condition_EZH2i_vs_Naive", type="apeglm")
  diff <- diff_lfc
} else {
  diff <- results(diff, alpha = params$pval_cutoff)
}

plotMA(diff)

Version Author Date
c1fb0ef C. Navarro 2022-02-05
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26
df_diff <- make_diff_df(diff, "H2Aub_DS_EZH2i_vs_Ni")
master_df <- left_join(master_df, df_diff, by = "name")

EZH2i vs Primed

c1 <- bw_loci(bwfiles$ub_primed, genes_tss_broad)
c2 <- bw_loci(bwfiles$ub_primed_ezh2i, genes_tss_broad)

diff <- bw_granges_diff_analysis(c1, c2, "Primed", "EZH2i", estimate_size_factors = FALSE)
if (params$shrink_histones == TRUE) {
  diff_lfc <- lfcShrink(diff, coef="condition_EZH2i_vs_Primed", type="apeglm")
  diff <- diff_lfc
} else {
  diff <- results(diff, alpha = params$pval_cutoff)
}

plotMA(diff)

Version Author Date
c1fb0ef C. Navarro 2022-02-05
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26
df_diff <- make_diff_df(diff, "H2Aub_DS_EZH2i_vs_Pr")
master_df <- left_join(master_df, df_diff, by = "name")

RNA-seq diff analysis

Primed vs Naive

ni_pr_diff <- ni_pr_expression_analysis(params$datadir, alpha = params$pval_cutoff, shrink = params$shrink_rnaseq)
plotMA(ni_pr_diff)

Version Author Date
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26

EZH2i vs Naive

ni_ezh2i_diff <- ni_ezh2i_expression_analysis(params$datadir, alpha = params$pval_cutoff, shrink = params$shrink_rnaseq)
plotMA(ni_ezh2i_diff)

Version Author Date
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26

EZH2i vs Primed

pr_ezh2i_diff <- pr_ezh2i_expression_analysis(params$datadir, alpha = params$pval_cutoff, shrink = params$shrink_rnaseq)
plotMA(pr_ezh2i_diff)

Version Author Date
ba77468 C. Navarro 2021-07-02
58564ac cnluzon 2021-05-26

Expression table

counts_file <- file.path(params$datadir, "rnaseq/Kumar_2020/rsem.merged.gene_tpm.tsv")
tpm_counts <- read.table(counts_file, sep = "\t", header = TRUE)

columns <- colnames(tpm_counts)[!colnames(tpm_counts) %in% c("transcript_id.s.")]
tpm_counts <- tpm_counts[, columns]

new_values <- paste("RNASeq_TPM",
                    gsub("Kumar_2020_", "", columns[2:length(columns)]), sep = "_")
new_values <- gsub("Naive", "Ni", new_values)
new_values <- gsub("Primed", "Pr", new_values)
new_columns <- c("name", new_values)

colnames(tpm_counts) <- new_columns

make_df <- function(diffres, name_suffix) {
  df <- data.frame(diffres)
  colnames(df) <- paste(colnames(df), name_suffix, sep = "_")
  df$gene <- rownames(df)
  df
}

dfs <- list(make_diff_df(ni_pr_diff, "RNASeq_DS_Pr_vs_Ni"),
            make_diff_df(ni_ezh2i_diff, "RNASeq_DS_EZH2i_vs_Ni"),
            make_diff_df(pr_ezh2i_diff, "RNASeq_DS_EZH2i_vs_Pr"),
            tpm_counts)

expr_results_all <- reduce(dfs, full_join, by = "name")

H3K27m3 groups

select_groups <- function(df, pval_col, fc_col, basemean_col, quantile,
                          p_cutoff = 0.05, fc_cutoff = 1, basemean_quantile = 0.1) {
  # I don't want to discard the NAs as they will go to the unenriched group.
  df[is.na(df[[pval_col]]), pval_col] <- 1
  min_mean <- quantile(df[[basemean_col]], probs = basemean_quantile)

  signif_up_tss <- df %>% filter(.data[[pval_col]] <= p_cutoff & .data[[fc_col]] > fc_cutoff & .data[[basemean_col]] > min_mean)
  signif_down_tss <- df %>% filter(.data[[pval_col]] <= p_cutoff & .data[[fc_col]] < -fc_cutoff & .data[[basemean_col]] > min_mean)

  not_signif <- df %>% filter(.data[[pval_col]] > p_cutoff)

  # Top
  mean_cutoff <- quantile(not_signif[[basemean_col]], quantile)
  always_up <- not_signif %>% filter(.data[[basemean_col]] >= mean_cutoff)

  rest <- not_signif %>% filter(.data[[basemean_col]] < mean_cutoff)

  list(up = signif_up_tss,
       down = signif_down_tss,
       always_up = always_up,
       not_enriched = rest)
}

select_groups_bivalent <- function(df, quantile = 0.8, p_cutoff = 0.05, fc_cutoff = 1, basemean_quantile = 0.1, min_k4 = 2) {
  select_k4 <- function(df, min_k4) {
    df %>% filter(.data[["H3K4m3_Pr_mean_cov"]] > min_k4 | .data[["H3K4m3_Ni_mean_cov"]] > min_k4)
  }

  groups <- select_groups(
    df,
    "H3K27m3_DS_Pr_vs_Ni_padj",
    "H3K27m3_DS_Pr_vs_Ni_log2FoldChange",
    "H3K27m3_DS_Pr_vs_Ni_baseMean",
    quantile,
    p_cutoff,
    fc_cutoff,
    basemean_quantile
  )

  lapply(groups, select_k4, min_k4 = min_k4)
}

k27_groups <- select_groups_bivalent(master_df, fc_cutoff = log2(1.5), p_cutoff = 0.05)

# Annotate our groups
master_df$k27_bivalency_grp <- "None"
master_df[master_df$name %in% k27_groups$up$name, "k27_bivalency_grp"] <- "Pr_higher_than_Ni"
master_df[master_df$name %in% k27_groups$down$name, "k27_bivalency_grp"] <- "Ni_higher_than_Pr"
master_df[master_df$name %in% k27_groups$always_up$name, "k27_bivalency_grp"] <- "Always_up"
master_df[master_df$name %in% k27_groups$not_enriched$name, "k27_bivalency_grp"] <- "K4_only"

External annotations

genes_loci <- import("./data/bed/Kumar_2020/Kumar_2020_genes_hg38_UCSC_frozen.bed")
genes_tss <- promoters(genes_loci, upstream = 2500, downstream = 2500)

court_bivalent <- rtracklayer::import("./data/bed/Bivalent_Court2017.hg38.bed")
court_biv_genes <- subsetByOverlaps(genes_tss, court_bivalent)

master_df$court_bivalent <- "No"
master_df[master_df$name %in% court_biv_genes$name, "court_bivalent"] <- "Yes"

Final table

final <- left_join(master_df, expr_results_all, by = "name")
# Add TSS broad coords
loci <- data.frame(genes_tss_broad)
final <- left_join(final, loci, by = "name")

columns <- colnames(final)
first_cols <- c("name", "seqnames", "start", "end", "strand", "k27_bivalency_grp", "court_bivalent")
order <-
  c(first_cols,
    sort(columns[!(columns %in% first_cols)]))

filename <- "./data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.tsv"

write.table(
  format(final[, order], digits = 4),
  file = filename,
  sep = "\t",
  col.names = T,
  quote = F,
  row.names = F
)

sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS

Matrix products: default
BLAS:   /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3

locale:
 [1] LC_CTYPE=en_US.UTF-8       LC_NUMERIC=C              
 [3] LC_TIME=sv_SE.UTF-8        LC_COLLATE=en_US.UTF-8    
 [5] LC_MONETARY=sv_SE.UTF-8    LC_MESSAGES=en_US.UTF-8   
 [7] LC_PAPER=sv_SE.UTF-8       LC_NAME=C                 
 [9] LC_ADDRESS=C               LC_TELEPHONE=C            
[11] LC_MEASUREMENT=sv_SE.UTF-8 LC_IDENTIFICATION=C       

attached base packages:
[1] stats4    stats     graphics  grDevices utils     datasets  methods  
[8] base     

other attached packages:
 [1] biomaRt_2.50.0                          
 [2] DESeq2_1.34.0                           
 [3] SummarizedExperiment_1.24.0             
 [4] MatrixGenerics_1.6.0                    
 [5] matrixStats_0.61.0                      
 [6] tidyr_1.1.4                             
 [7] cowplot_1.1.1                           
 [8] xfun_0.28                               
 [9] dplyr_1.0.7                             
[10] purrr_0.3.4                             
[11] rtracklayer_1.54.0                      
[12] org.Hs.eg.db_3.14.0                     
[13] TxDb.Hsapiens.UCSC.hg38.knownGene_3.14.0
[14] GenomicFeatures_1.46.1                  
[15] AnnotationDbi_1.56.2                    
[16] Biobase_2.54.0                          
[17] GenomicRanges_1.46.0                    
[18] GenomeInfoDb_1.30.0                     
[19] IRanges_2.28.0                          
[20] S4Vectors_0.32.2                        
[21] BiocGenerics_0.40.0                     
[22] knitr_1.36                              
[23] ggplot2_3.3.5                           
[24] wigglescout_0.13.5                      
[25] workflowr_1.6.2                         

loaded via a namespace (and not attached):
  [1] colorspace_2.0-2         rjson_0.2.20             ellipsis_0.3.2          
  [4] rprojroot_2.0.2          XVector_0.34.0           fs_1.5.0                
  [7] listenv_0.8.0            furrr_0.2.3              bit64_4.0.5             
 [10] mvtnorm_1.1-3            apeglm_1.16.0            fansi_0.5.0             
 [13] xml2_1.3.2               splines_4.1.2            codetools_0.2-18        
 [16] cachem_1.0.6             geneplotter_1.72.0       jsonlite_1.7.2          
 [19] Rsamtools_2.10.0         annotate_1.72.0          dbplyr_2.1.1            
 [22] png_0.1-7                compiler_4.1.2           httr_1.4.2              
 [25] assertthat_0.2.1         Matrix_1.4-0             fastmap_1.1.0           
 [28] later_1.3.0              htmltools_0.5.2          prettyunits_1.1.1       
 [31] tools_4.1.2              coda_0.19-4              gtable_0.3.0            
 [34] glue_1.5.1               GenomeInfoDbData_1.2.7   reshape2_1.4.4          
 [37] rappdirs_0.3.3           Rcpp_1.0.7               bbmle_1.0.24            
 [40] jquerylib_0.1.4          vctrs_0.3.8              Biostrings_2.62.0       
 [43] stringr_1.4.0            globals_0.14.0           lifecycle_1.0.1         
 [46] restfulr_0.0.13          XML_3.99-0.8             future_1.23.0           
 [49] MASS_7.3-54              zlibbioc_1.40.0          scales_1.1.1            
 [52] hms_1.1.1                promises_1.2.0.1         parallel_4.1.2          
 [55] RColorBrewer_1.1-2       yaml_2.2.1               curl_4.3.2              
 [58] memoise_2.0.0            emdbook_1.3.12           sass_0.4.0              
 [61] bdsmatrix_1.3-4          stringi_1.7.6            RSQLite_2.2.8           
 [64] highr_0.9                genefilter_1.76.0        BiocIO_1.4.0            
 [67] filelock_1.0.2           BiocParallel_1.28.0      rlang_0.4.12            
 [70] pkgconfig_2.0.3          bitops_1.0-7             evaluate_0.14           
 [73] lattice_0.20-45          GenomicAlignments_1.30.0 bit_4.0.4               
 [76] tidyselect_1.1.1         parallelly_1.28.1        plyr_1.8.6              
 [79] magrittr_2.0.1           R6_2.5.1                 generics_0.1.1          
 [82] DelayedArray_0.20.0      DBI_1.1.1                pillar_1.6.4            
 [85] whisker_0.4              withr_2.4.2              survival_3.2-13         
 [88] KEGGREST_1.34.0          RCurl_1.98-1.5           tibble_3.1.6            
 [91] crayon_1.4.2             utf8_1.2.2               BiocFileCache_2.2.0     
 [94] rmarkdown_2.11           progress_1.2.2           locfit_1.5-9.4          
 [97] grid_4.1.2               blob_1.2.2               git2r_0.28.0            
[100] digest_0.6.28            xtable_1.8-4             numDeriv_2016.8-1.1     
[103] httpuv_1.6.3             munsell_0.5.0            bslib_0.3.1