Last updated: 2022-02-04
Checks: 7 0
Knit directory: hesc-epigenomics/
This reproducible R Markdown analysis was created with workflowr (version 1.6.2). The Checks tab describes the reproducibility checks that were applied when the results were created. The Past versions tab lists the development history.
Great! Since the R Markdown file has been committed to the Git repository, you know the exact version of the code that produced these results.
Great job! The global environment was empty. Objects defined in the global environment can affect the analysis in your R Markdown file in unknown ways. For reproduciblity it’s best to always run the code in an empty environment.
The command set.seed(20210202)
was run prior to running the code in the R Markdown file. Setting a seed ensures that any results that rely on randomness, e.g. subsampling or permutations, are reproducible.
Great job! Recording the operating system, R version, and package versions is critical for reproducibility.
Nice! There were no cached chunks for this analysis, so you can be confident that you successfully produced the results during this run.
Great job! Using relative paths to the files within your workflowr project makes it easier to run your code on other machines.
Great! You are using Git for version control. Tracking code development and connecting the code version to the results is critical for reproducibility.
The results in this page were generated with repository version 25484cd. See the Past versions tab to see a history of the changes made to the R Markdown and HTML files.
Note that you need to be careful to ensure that all relevant files for the analysis have been committed to Git prior to generating the results (you can use wflow_publish
or wflow_git_commit
). workflowr only checks the R Markdown file, but you know if there are other scripts or data files that it depends on. Below is the status of the Git repository when the results were generated:
Ignored files:
Ignored: .Rhistory
Ignored: .Rproj.user/
Ignored: analysis/fig_02_x_chromosome_extended.Rmd
Ignored: analysis/rnaseq_comparsion_extended.Rmd
Ignored: analysis/scRNAseq_downstream_extended.Rmd
Ignored: analysis/scRNAseq_downstream_traj_extended.Rmd
Ignored: data/bed/
Ignored: data/bw/
Ignored: data/rnaseq/
Ignored: data_backup/
Ignored: figures_data/
Untracked files:
Untracked: Kumar_2021_hESC_data.zip
Untracked: Rplot001.jpeg
Untracked: Rplot002.jpeg
Untracked: analysis/fig_05_microscopy.Rmd
Untracked: analysis/review_figures.Rmd
Untracked: code/211203_summary_figures_nfcore.R
Untracked: code/raw_scripts/Fig4d_fromSimon.zip
Untracked: code/raw_scripts/Fig4d_fromSimon/
Untracked: code/raw_scripts/fig3d_simon/
Untracked: data/Lanner_lineagemarker_genes.csv
Untracked: data/Messmer_intermediate_all_pval_05.txt
Untracked: data/Messmer_intermediate_down_top50.txt
Untracked: data/Messmer_intermediate_up_top50.txt
Untracked: data/meta/Kumar_2020_master_bins_10kb_table_final_raw.tsv
Untracked: data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.tsv
Untracked: data/microscopy/
Untracked: data/scrnaseq/
Untracked: excel_datasheets/
Untracked: output/
Unstaged changes:
Modified: .gitignore
Modified: analysis/fig_01_quantitative_chip.Rmd
Modified: analysis/fig_02_x_chromosome.Rmd
Modified: analysis/fig_03_h3k27m3_groups.Rmd
Modified: analysis/fig_04_intermediate.Rmd
Modified: analysis/index.Rmd
Modified: analysis/rnaseq_comparison.Rmd
Modified: code/heatmaply_functions.R
Deleted: data/README.md
Deleted: data/meta/Court_2017_gene_names_uniq.txt
Deleted: data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.zip
Deleted: data/meta/Kumar_2020_public_data_plus_layout.csv
Deleted: data/meta/biblio.bib
Deleted: data/meta/colors.R
Deleted: data/meta/style_info.csv
Deleted: data/other/Messmer_2019/Messmer_intermediate_down_top50.txt
Deleted: data/other/Messmer_2019/Messmer_intermediate_up_top50.txt
Note that any generated files, e.g. HTML, png, CSS, etc., are not included in this status report because it is ok for generated content to have uncommitted changes.
These are the previous versions of the repository in which changes were made to the R Markdown (analysis/fig_01_genome_wide_marks_chr_x.Rmd
) and HTML (docs/fig_01_genome_wide_marks_chr_x.html
) files. If you’ve configured a remote Git repository (see ?wflow_git_remote
), click on the hyperlinks in the table below to view the files as they were in that past version.
File | Version | Author | Date | Message |
---|---|---|---|---|
Rmd | 25484cd | C. Navarro | 2022-02-04 | Fig 1 and 2 fused panel |
Supplementary code for panel 1 figures.
#' Calculate INRC from a mapped read counts table, and append such values
#' to it.
#'
#' @param counts Counts table. Corresponding file is provided as part of the
#' included metadata.
#' @param selector Counts column used. Final_mapped represents the final number
#' of reads after deduplication and blacklisting.
#' @return A table including INRC and INRC norm to naive reference
calculate_inrc <- function(counts, selector = "final_mapped") {
counts$condition <- paste(counts$celltype, counts$treatment, sep="_")
inputs <- counts[counts$ip == "Input", c("library", selector)]
colnames(inputs) <- c("library", "input_reads")
non_inputs <- counts[counts$ip != "Input",]
counts <- merge(non_inputs, inputs, by.x="input", by.y="library")
counts$inrc <- counts[, selector] / counts[, "input_reads"]
references <- counts[grepl("_Ni_pooled", counts$library), c("ip", "inrc")]
colnames(references) <- c("ip", "ref_inrc")
counts <- merge(counts, references, by="ip")
counts$norm_to_naive <- counts$inrc / counts$ref_inrc
id_vars <- c("ip", "treatment", "celltype", "condition", "replicate", "norm_to_naive")
inrc <- counts[, c(id_vars)]
inrc$condition <- factor(
inrc$condition,
levels = c(
"Naive_Untreated",
"Primed_Untreated",
"Naive_EZH2i",
"Primed_EZH2i"
)
)
inrc
}
#' Barplot INRC pooled vs replicates per condition
#'
#' @param inrc Table with the INRC values
#' @param ip Which IP to plot
#' @param colors Corresponding colors
inrc_barplot <- function(inrc, ip, colors, font = 16) {
inrc <- inrc[inrc$ip == ip, ]
# So paired test takes right replicates
inrc <- inrc[order(inrc$condition, inrc$replicate), ]
max_v <- max(abs(inrc$norm_to_naive))
aesthetics <- aes(x = .data[["condition"]],
y = .data[["norm_to_naive"]],
color = .data[["condition"]])
my_comp <- list(c("Naive_Untreated", "Primed_Untreated"),
c("Naive_Untreated", "Naive_EZH2i"),
c("Primed_Untreated", "Primed_EZH2i"),
c("Naive_EZH2i", "Primed_EZH2i"))
stats_method <- "t.test"
ggplot(inrc[inrc$replicate != 'pooled',], aesthetics) +
geom_point() +
stat_compare_means(
method = stats_method,
paired = FALSE,
comparisons = my_comp,
label = "p.format"
) +
geom_bar(
data = inrc[inrc$replicate == 'pooled',],
stat = 'identity',
alpha = 0.6,
aes(fill = condition)
) +
scale_fill_manual(values = colors) +
scale_color_manual(values = colors) +
labs(
x = "",
y = 'INRC fraction vs Naïve',
title = paste(ip, "MINUTE-ChIP"),
caption = paste(stats_method, "signif. test, paired")
) +
theme_classic(base_size = font) +
theme(axis.text.x = element_text(angle = 45, hjust = 1)) +
ylim(0, 1.5)
}
#' Summarize stats per chromosome on a scaled bigWig file
#'
#' @param bwfile BigWig file to summarize
#' @param chromosomes Array of chromosome names to include.
#'
#' @return A data frame with stats per chromosome: mean, chr size, #reads
#' (estimated as (score * chr size) / fraglen), %reads.
scaled_reads_per_chromosome <- function(bwfile, chromosomes, fraglen = 150) {
granges <- unlist(summary(BigWigFile(bwfile)))
df <- data.frame(granges[seqnames(granges) %in% chromosomes, ])
rownames(df) <- df$seqnames
# Calculate scaled number of reads as mean x chromosome length / read length
df$nreads <- (df$score * df$width) / fraglen
# Perc of total
df$perc <- (df$nreads / sum(df$nreads)) * 100
# Perc size
df$size <- df$width / sum(df$width)
df$group <- basename(bwfile)
df[chromosomes, ]
}
chromosomes <- paste0("chr", c(1:22, "X"))
# Fix some parameters on treemap function to remove some clutter from nb.
chr_treeplot <- partial(
treemap,
index = "seqnames",
vSize = "nreads",
vColor = "score",
type = "value",
mapping = c(0, 3),
range = c(0, 3),
fontsize.labels = 16,
fontsize.legend = 16,
fontsize.title = 20
)
ridges_chromosome_plot <- function(values, column, color, main_seqs = chromosomes, scale = 1.7) {
value_name <- column
df <- values[values$seqnames %in% main_seqs, c("seqnames", value_name)]
colnames(df) <- c("seqnames", "value")
df$value <- as.numeric(df$value)
df$seqnames <- factor(df$seqnames, levels = rev(main_seqs))
df_summary <- df %>% group_by(seqnames) %>%
summarise(value=median(value, na.rm = T))
x_nudge <- quantile(df$value, 0.02, na.rm = T)
ggplot(df, aes(x = value, y = seqnames, fill = seqnames)) +
geom_density_ridges(
rel_min_height = 0.001,
scale = 1.7,
calc_ecdf = TRUE,
quantile_lines = TRUE, quantiles = 2,
) +
theme_default(base_size = 12) +
labs(y = "", x = "log2FC") +
scale_fill_manual(values = c(color, rep("#bbbbbb", 22))) + theme(legend.position = "none") +
geom_vline(xintercept = 0, linetype = "dashed", size = 0.2) +
geom_text(data=df_summary,
aes(label=sprintf("%1.2f", value)),
position=position_nudge(y=0.35, x = x_nudge), colour="black", size=3)
}
get_long_format_heatmap_data <- function(df, mark) {
columns <- grep("mean_cov", colnames(df), value = T)
main_seqs <- paste0("chr", c(1:22, "X"))
df <- df[df$seqnames %in% main_seqs, c("seqnames", columns)]
summary_mat <- df %>% group_by(seqnames) %>% summarise_at(columns, mean, na.rm = TRUE)
to_plot <- summary_mat %>%
select("seqnames", contains(mark) & contains("mean_cov") & !contains("rep"))
# Reorder chromosomes and conditions
conditions <- c("Ni", "Ni_EZH2i", "Pr", "Pr_EZH2i")
to_plot$seqnames <- gsub("chr", "", to_plot$seqnames)
to_plot$seqnames <- factor(to_plot$seqnames, levels = c(1:22, "X"))
colnames(to_plot) <- c("seqnames", conditions)
to_plot_melt <- pivot_longer(to_plot, !seqnames)
to_plot_melt$name <- factor(to_plot_melt$name, levels = rev(conditions))
to_plot_melt
}
colors_list <- c("Naive_EZH2i"="#82c5c6",
"Naive_Untreated"="#278b8b",
"Primed_EZH2i"="#f49797",
"Primed_Untreated"="#f44b34")
genes <- read.table("./data/meta/Kumar_2020_master_gene_table_rnaseq_shrunk_annotated.tsv",
header = T, sep = "\t",
colClasses = c(rep("character", 5), rep("factor", 3), rep("numeric", 86)))
bins <- read.table("./data/meta/Kumar_2020_master_bins_10kb_table_final_raw.tsv",
header = T, sep = "\t",
colClasses = c(rep("character", 5), rep("numeric", 112)))
counts_file <- file.path(params$datadir, "meta", "Kumar_2020_stats_summary.csv")
counts <- read.table(counts_file, sep="\t", header = T, na.strings = "NA", stringsAsFactors = F)
inrc <- calculate_inrc(counts)
inrc_barplot(inrc, "H2Aub", colors_list)
You can download data values here: download plot data.
inrc_barplot(inrc, "H3K27m3", colors_list)
You can download data values here: download plot data.
inrc_barplot(inrc, "H3K4m3", colors_list)
You can download data values here: download plot data.
Here global average per ChromHMM categories are shown.
labels <- gsub("_pooled.hg38.scaled.bw", "", basename(bwfiles$k27))
labels <- gsub("_H9", "", labels)
chromhmm <- params$chromhmm
plot_bw_loci_summary_heatmap(bwfiles$k27, chromhmm, labels = labels, remove_top=0.001)
You can download data values here: download plot data.
labels <- gsub("_pooled.hg38.scaled.bw", "", basename(bwfiles$k4))
labels <- gsub("_H9", "", labels)
plot_bw_loci_summary_heatmap(bwfiles$k4, chromhmm, labels = labels, remove_top=0.001)
You can download data values here: download plot data.
labels <- gsub("_pooled.hg38.scaled.bw", "", basename(bwfiles$ub))
labels <- gsub("_H9", "", labels)
plot_bw_loci_summary_heatmap(bwfiles$ub, chromhmm, labels = labels, remove_top=0.001)
You can download data values here: download plot data.
points_color <- "#112233"
points_shape <- "."
raster_dpi <- 300
ggplot(bins, aes(x=log2(H3K27m3_Ni_mean_cov), y=log2(H3K27m3_Pr_mean_cov))) +
rasterise(geom_point(size = 1, alpha = 0.2, color = points_color, shape = points_shape), dpi = raster_dpi) +
geom_density2d(binwidth = 0.1) +
geom_abline(slope = 1, linetype = "dashed") +
theme_default() +
labs(x = "Log2 H3K27m3 Naïve - FPGC",
y = "Log2 H3K27m3 Primed - FPGC", title = "H3K27m3", subtitle = "10kb bins") +
coord_cartesian(xlim = c(-8, 8), ylim = c(-8, 8))
ggplot(bins, aes(x=log2(H2Aub_Ni_mean_cov), y=log2(H2Aub_Pr_mean_cov))) +
rasterise(geom_point(size = 1, alpha = 0.2, color = "#2f1547", shape = points_shape), dpi = raster_dpi) +
geom_abline(slope = 1, linetype = "dashed") +
geom_density2d(binwidth = 0.1) +
theme_default() +
labs(x = "Log2 H2Aub Naïve - FPGC",
y = "Log2 H2Aub Primed - FPGC", title = "H2Aub", subtitle = "10kb bins") +
coord_cartesian(xlim = c(-8, 8), ylim = c(-8, 8))
ggplot(bins, aes(x=log2(H3K4m3_Ni_mean_cov), y=log2(H3K4m3_Pr_mean_cov))) +
rasterise(geom_point(size = 1, alpha = 0.2, color = "#614925", shape = points_shape), dpi = raster_dpi) +
geom_abline(slope = 1, linetype = "dashed") +
geom_density2d(binwidth = 0.1) +
theme_default() +
labs(x = "Log2 H3K4m3 Naïve - FPGC",
y = "Log2 H3K4m3 Primed - FPGC", title = "H3K4m3", subtitle = "10kb bins") +
coord_cartesian(xlim = c(-8, 8), ylim = c(-8, 8))
columns <- grep("mean_cov", colnames(bins), value = T)
main_seqs <- paste0("chr", c(1:22, "X"))
df <- bins[bins$seqnames %in% main_seqs, c("seqnames", columns)]
summary_mat <- df %>% group_by(seqnames) %>% summarise_at(columns, mean, na.rm = TRUE)
to_plot <- summary_mat %>% select("seqnames", contains("mean_cov") & !contains("IN") & !contains("rep"))
# Reorder chromosomes
to_plot$seqnames <- gsub("chr", "", to_plot$seqnames)
to_plot$seqnames <- factor(to_plot$seqnames, levels = c(1:22, "X"))
to_plot_melt <- pivot_longer(to_plot, !seqnames)
to_plot_melt$name <- gsub("_mean_cov", "", to_plot_melt$name)
to_plot_melt$ip <- str_split_fixed(to_plot_melt$name, "_", 2)[, 1]
to_plot_melt$condition <- str_split_fixed(to_plot_melt$name, "_", 2)[, 2]
ggplot(to_plot_melt, aes(color = ip, x = condition, y = value, label = seqnames)) +
geom_boxplot(color = "gray", alpha = 0.9) +
geom_jitter(position = "dodge") +
geom_jitter(data = to_plot_melt %>% filter(seqnames == "X"), color = "black", size = 3.5, position = "dodge") +
geom_label_repel(data = to_plot_melt %>% filter(
seqnames == "X" & ip == "H3K27m3" & condition == "Ni"), color = "black", box.padding = 1.5) +
theme_default(base_size=12) +
facet_wrap(. ~ ip, nrow = 1) +
geom_hline(yintercept = 1, linetype = "dashed", alpha = 0.8) +
scale_color_manual(
values = c("H2Aub" = gl_mark_colors$H2Aub,
"H3K27m3" = gl_mark_colors$H3K27m3,
"H3K4m3" = gl_mark_colors$H3K4m3)) +
labs(y="FPGC", title =
"Mean 10kb bin RPGC per chromosome and histone mark",
subtitle = "Chromosome X in black")
These figures are made using the package karyoploteR: https://academic.oup.com/bioinformatics/article/33/19/3088/3857734
kp <-
plotKaryotype(
genome = "hg38",
plot.type = 1,
main = "H3K27m3 Naïve vs Primed",
chromosomes = c("chr7", "chrX")
)
d1 <- kpPlotDensity(
kp,
rtracklayer::import(bwfiles$k27[[1]]),
data.panel = 1,
col = "#092ba8",
chromosomes = c("chr7", "chrX"),
window.size = 500000
)
d2 <- kpPlotDensity(
kp,
rtracklayer::import(bwfiles$k27[[3]]),
data.panel = 2,
col =
"#5d9ddd",
chromosomes = c("chr7", "chrX"),
window.size = 500000
)
# Store these values on a table
df1 <- cbind(data.frame(d1$latest.plot$computed.values$windows, d1$latest.plot$computed.values$density))
df2 <- cbind(data.frame(d2$latest.plot$computed.values$windows, d2$latest.plot$computed.values$density))
df_karyo <- left_join(df1, df2)
colnames(df_karyo) <- c("seqnames", "start", "end", "width", "strand", "H3K27m3_Pr", "H3K27m3_Ni")
final_df <- df_karyo
kp <-
plotKaryotype(
genome = "hg38",
plot.type = 1,
main = "H3K4m3 Naïve vs Primed",
chromosomes = c("chr7", "chrX")
)
d1 <- kpPlotDensity(
kp,
rtracklayer::import(bwfiles$k4[[3]]),
data.panel = 2,
col =
"#ffab45",
chromosomes = c("chr7", "chrX"),
window.size = 500000
)
d2 <- kpPlotDensity(
kp,
rtracklayer::import(bwfiles$k4[[1]]),
data.panel = 1,
col = "#e76e3b",
chromosomes = c("chr7", "chrX"),
window.size = 500000
)
# Store these values on a table
df1 <- cbind(data.frame(d1$latest.plot$computed.values$windows, d1$latest.plot$computed.values$density))
df2 <- cbind(data.frame(d2$latest.plot$computed.values$windows, d2$latest.plot$computed.values$density))
df_karyo <- left_join(df1, df2)
colnames(df_karyo) <- c("seqnames", "start", "end", "width", "strand", "H3K4m3_Pr", "H3K4m3_Ni")
final_df <- left_join(final_df, df_karyo)
kp <-
plotKaryotype(
genome = "hg38",
plot.type = 1,
main = "H2Aub Naïve vs Primed",
chromosomes = c("chr7", "chrX")
)
d1 <- kpPlotDensity(
kp,
rtracklayer::import(bwfiles$ub[[1]]),
data.panel = 1,
col = "#400c84",
chromosomes = c("chr7", "chrX"),
window.size = 500000
)
d2 <- kpPlotDensity(
kp,
rtracklayer::import(bwfiles$ub[[3]]),
data.panel = 2,
col =
"#a07af0",
chromosomes = c("chr7", "chrX"),
window.size = 500000
)
# Store these values on a table
df1 <- cbind(data.frame(d1$latest.plot$computed.values$windows, d1$latest.plot$computed.values$density))
df2 <- cbind(data.frame(d2$latest.plot$computed.values$windows, d2$latest.plot$computed.values$density))
df_karyo <- left_join(df1, df2)
colnames(df_karyo) <- c("seqnames", "start", "end", "width", "strand", "H2Aub_Pr", "H2Aub_Ni")
final_df <- left_join(final_df, df_karyo)
H3K27me3 is highly abundant on X chromosome on naïve cells.
If we take a look at coverage per chromosome for both Naïve and Primed cells:
values <- scaled_reads_per_chromosome(bwfiles$k27[[1]], chromosomes = chromosomes)
chr_treeplot(
values,
palette = c("#ffffff", gl_condition_colors[["Naive_Untreated"]]),
fontcolor.labels = "#555555",
border.col = c("white"),
title = "H3K27m3 - Naïve"
)
Values can be downloaded here: download plot data.
In this and subsequent plots, each rectangle’s size is proportional to the number of reads mapped to its corresponding chromosome. Color intensity represents mean coverage per chromosome, and rectangles are ordered according to size. Top-left is the highest value.
These figures are made using the package ggridges: https://wilkelab.org/ggridges/
ridges_chromosome_plot(genes, "RNASeq_DS_Pr_vs_Ni_log2FoldChange", "#F08080") +
labs(title = "RNA Seq log2FC distribution Primed vs Naïve DESeq2") +
coord_cartesian(xlim=c(-7, 7))
Values used in this plot.
ridges_chromosome_plot(genes, "H3K27m3_DS_Pr_vs_Ni_log2FoldChange", "#3e5aa8") +
labs(title = "H3K27m3 Primed vs Naïve DESeq2") + coord_cartesian(xlim=c(-7, 7))
Values used in this plot.
ridges_chromosome_plot(genes, "RNASeq_DS_EZH2i_vs_Ni_log2FoldChange", "#F08080") +
labs(title = "RNA Seq EZH2i vs Naïve DESeq2") +
coord_cartesian(xlim=c(-5, 5))
Values used in this plot.
sessionInfo()
R version 4.1.2 (2021-11-01)
Platform: x86_64-pc-linux-gnu (64-bit)
Running under: Ubuntu 20.04.3 LTS
Matrix products: default
BLAS: /usr/lib/x86_64-linux-gnu/openblas-pthread/libblas.so.3
LAPACK: /usr/lib/x86_64-linux-gnu/openblas-pthread/liblapack.so.3
locale:
[1] LC_CTYPE=en_US.UTF-8 LC_NUMERIC=C
[3] LC_TIME=sv_SE.UTF-8 LC_COLLATE=en_US.UTF-8
[5] LC_MONETARY=sv_SE.UTF-8 LC_MESSAGES=en_US.UTF-8
[7] LC_PAPER=sv_SE.UTF-8 LC_NAME=C
[9] LC_ADDRESS=C LC_TELEPHONE=C
[11] LC_MEASUREMENT=sv_SE.UTF-8 LC_IDENTIFICATION=C
attached base packages:
[1] stats4 stats graphics grDevices utils datasets methods
[8] base
other attached packages:
[1] svglite_2.0.0 scales_1.1.1 ggrepel_0.9.1
[4] rtracklayer_1.54.0 cowplot_1.1.1 karyoploteR_1.20.0
[7] regioneR_1.26.0 GenomicRanges_1.46.0 GenomeInfoDb_1.30.0
[10] IRanges_2.28.0 S4Vectors_0.32.2 BiocGenerics_0.40.0
[13] ggridges_0.5.3 treemap_2.4-3 knitr_1.36
[16] ggrastr_0.2.3 ggpubr_0.4.0 wigglescout_0.13.5
[19] forcats_0.5.1 stringr_1.4.0 dplyr_1.0.7
[22] purrr_0.3.4 readr_2.1.0 tidyr_1.1.4
[25] tibble_3.1.6 tidyverse_1.3.1 ggplot2_3.3.5
[28] workflowr_1.6.2
loaded via a namespace (and not attached):
[1] utf8_1.2.2 tidyselect_1.1.1
[3] RSQLite_2.2.8 AnnotationDbi_1.56.2
[5] htmlwidgets_1.5.4 grid_4.1.2
[7] BiocParallel_1.28.0 munsell_0.5.0
[9] codetools_0.2-18 future_1.23.0
[11] withr_2.4.2 colorspace_2.0-2
[13] Biobase_2.54.0 filelock_1.0.2
[15] highr_0.9 rstudioapi_0.13
[17] ggsignif_0.6.3 listenv_0.8.0
[19] labeling_0.4.2 MatrixGenerics_1.6.0
[21] git2r_0.28.0 GenomeInfoDbData_1.2.7
[23] farver_2.1.0 bit64_4.0.5
[25] rprojroot_2.0.2 parallelly_1.28.1
[27] vctrs_0.3.8 generics_0.1.1
[29] xfun_0.28 biovizBase_1.42.0
[31] BiocFileCache_2.2.0 R6_2.5.1
[33] ggbeeswarm_0.6.0 isoband_0.2.5
[35] AnnotationFilter_1.18.0 bitops_1.0-7
[37] cachem_1.0.6 DelayedArray_0.20.0
[39] assertthat_0.2.1 promises_1.2.0.1
[41] BiocIO_1.4.0 nnet_7.3-16
[43] beeswarm_0.4.0 gtable_0.3.0
[45] Cairo_1.5-12.2 globals_0.14.0
[47] ensembldb_2.18.2 rlang_0.4.12
[49] systemfonts_1.0.3 splines_4.1.2
[51] rstatix_0.7.0 lazyeval_0.2.2
[53] dichromat_2.0-0 broom_0.7.10
[55] checkmate_2.0.0 yaml_2.2.1
[57] reshape2_1.4.4 abind_1.4-5
[59] modelr_0.1.8 GenomicFeatures_1.46.1
[61] backports_1.3.0 httpuv_1.6.3
[63] Hmisc_4.6-0 tools_4.1.2
[65] gridBase_0.4-7 ellipsis_0.3.2
[67] jquerylib_0.1.4 RColorBrewer_1.1-2
[69] Rcpp_1.0.7 plyr_1.8.6
[71] base64enc_0.1-3 progress_1.2.2
[73] zlibbioc_1.40.0 RCurl_1.98-1.5
[75] prettyunits_1.1.1 openssl_1.4.5
[77] rpart_4.1-15 SummarizedExperiment_1.24.0
[79] haven_2.4.3 cluster_2.1.2
[81] fs_1.5.0 furrr_0.2.3
[83] magrittr_2.0.1 data.table_1.14.2
[85] reprex_2.0.1 whisker_0.4
[87] ProtGenerics_1.26.0 matrixStats_0.61.0
[89] hms_1.1.1 mime_0.12
[91] evaluate_0.14 xtable_1.8-4
[93] XML_3.99-0.8 jpeg_0.1-9
[95] readxl_1.3.1 gridExtra_2.3
[97] compiler_4.1.2 biomaRt_2.50.0
[99] crayon_1.4.2 htmltools_0.5.2
[101] later_1.3.0 tzdb_0.2.0
[103] Formula_1.2-4 lubridate_1.8.0
[105] DBI_1.1.1 dbplyr_2.1.1
[107] MASS_7.3-54 rappdirs_0.3.3
[109] Matrix_1.4-0 car_3.0-12
[111] cli_3.1.0 parallel_4.1.2
[113] igraph_1.2.8 pkgconfig_2.0.3
[115] GenomicAlignments_1.30.0 foreign_0.8-81
[117] xml2_1.3.2 vipor_0.4.5
[119] bslib_0.3.1 XVector_0.34.0
[121] rvest_1.0.2 bezier_1.1.2
[123] VariantAnnotation_1.40.0 digest_0.6.28
[125] Biostrings_2.62.0 rmarkdown_2.11
[127] cellranger_1.1.0 htmlTable_2.3.0
[129] restfulr_0.0.13 curl_4.3.2
[131] shiny_1.7.1 Rsamtools_2.10.0
[133] rjson_0.2.20 lifecycle_1.0.1
[135] jsonlite_1.7.2 carData_3.0-4
[137] askpass_1.1 BSgenome_1.62.0
[139] fansi_0.5.0 pillar_1.6.4
[141] lattice_0.20-45 KEGGREST_1.34.0
[143] fastmap_1.1.0 httr_1.4.2
[145] survival_3.2-13 glue_1.5.1
[147] bamsignals_1.26.0 png_0.1-7
[149] bit_4.0.4 stringi_1.7.6
[151] sass_0.4.0 blob_1.2.2
[153] latticeExtra_0.6-29 memoise_2.0.0